kenneth A.로스 (Ross) 해석학 대학교재솔루션 입니다 7장~36장 자료
kenneth A.로스 (Ross) 해석학 대학교재솔루션 입니다 7장~36장 자료
kenneth A.로스 (Ross) 해석학 대학교재솔루션 입니다 7장~36장
HWP 파일로 되있구요. 7장 ~ 36장까지 있습니다. 미리보기 확인하시고 다운 바랍니다.
Exercises 1
1. Prove that for all natural numbers .
proof)
Let .
Since , is true.
Suppose that is true. i.e.
So, is true.
By mathematical Induction, is true for all natural numbers .
2. Prove for all natural numbers .
proof)
Let .
Since , is true.
Suppose that is true. i.e.
So, is true.
By mathematical Induction, is true for all natural numbers .
3. Prove for all natural numbers .
proof)
Let .
Since , is true.
Suppose that is true. i.e.
So, is true.
By mathematical Induction, is true for all natural numbers .
4. (a) Guess a formula for by evaluating the sum for and . [For , the sum is simply .]
sol.)
So, we guess .
(b) Prove your formula using mathematical induction.
proof)
Let .
Since , is true.
Suppose that is true. i.e.
So, is true.
By mathematical Induction, is true for all natural n
자료출처 : http://www.ALLReport.co.kr/search/Detail.asp?pk=14031701&sid=sanghyun7776&key=
[문서정보]
문서분량 : 99 Page
파일종류 : ZIP 파일
자료제목 : kenneth A.로스 (Ross) 해석학 대학교재솔루션 입니다 7장~36장
파일이름 : kenneth A.Ross 해석학 솔루션입니다 7장~36장.zip
키워드 : 해석학,kenneth,A,로스,Ross,대학교재솔루션,입니다,7장~36장
자료No(pk) : 14031701
kenneth A.로스 (Ross) 해석학 대학교재솔루션 입니다 7장~36장
HWP 파일로 되있구요. 7장 ~ 36장까지 있습니다. 미리보기 확인하시고 다운 바랍니다.
Exercises 1
1. Prove that for all natural numbers .
proof)
Let .
Since , is true.
Suppose that is true. i.e.
So, is true.
By mathematical Induction, is true for all natural numbers .
2. Prove for all natural numbers .
proof)
Let .
Since , is true.
Suppose that is true. i.e.
So, is true.
By mathematical Induction, is true for all natural numbers .
3. Prove for all natural numbers .
proof)
Let .
Since , is true.
Suppose that is true. i.e.
So, is true.
By mathematical Induction, is true for all natural numbers .
4. (a) Guess a formula for by evaluating the sum for and . [For , the sum is simply .]
sol.)
So, we guess .
(b) Prove your formula using mathematical induction.
proof)
Let .
Since , is true.
Suppose that is true. i.e.
So, is true.
By mathematical Induction, is true for all natural n
자료출처 : http://www.ALLReport.co.kr/search/Detail.asp?pk=14031701&sid=sanghyun7776&key=
[문서정보]
문서분량 : 99 Page
파일종류 : ZIP 파일
자료제목 : kenneth A.로스 (Ross) 해석학 대학교재솔루션 입니다 7장~36장
파일이름 : kenneth A.Ross 해석학 솔루션입니다 7장~36장.zip
키워드 : 해석학,kenneth,A,로스,Ross,대학교재솔루션,입니다,7장~36장
자료No(pk) : 14031701
댓글
댓글 쓰기